Some Properties of Two-Dimensional Bernstein Polynomials

Francisco Luquin Martinez
Departamento de Matemáticas, Universidad del Pais Vasco, Bilbao, Spain

Communicated by P. L. Butzer
Received June 18, 1987; revised March 9, 1988

Let $B_{n, m} f$ be the Bernstein polynomial of two variables, of degree (n, m), corresponding to a function $f: S \rightarrow R$, where S is the unit square $[0,1] \times[0,1]$. We demonstrate that, if all the partial derivatives of f of the first r orders exist and are continuous in S, then certain polynomials with integral coefficients, $B_{n, m}^{(q, r-q), e} f$, converge to ($\left.\partial^{r} / \partial x^{q} \partial y^{r-q}\right) f$ both in the uniform and L_{p}-norms. We define $B_{n, m}^{(q, r-q), e} f$ to be the polynomial $\left(\partial^{r} / \partial x^{q} \partial y^{r-q}\right)\left(B_{n, m} f\right)$ with each coefficient replaced by its integral part. An estimate of the order of approximation is also obtained. © 1989 Academic Press, Inc.

1. Introduction and Notation

Let the function of two real variables f be given over the unit square

$$
S:[0,1] \times[0,1] ;
$$

then the Bernstein polynomial of two variables, of degree (n, m), corresponding to the function f, is defined by means of the formula

$$
\left(B_{n, m} f\right)(x, y)=\sum_{i=0}^{n} \sum_{k=0}^{m} f\left(\frac{i}{n}, \frac{k}{m}\right) p_{i, n}(x) p_{k, m}(y)
$$

where

$$
p_{j, s}(z)=\binom{s}{j} z^{j}(1-z)^{s-j}
$$

Obviously

$$
\sum_{j=0}^{s} p_{j, s}(z)=1 .
$$

In [4] Butzer has given a more direct proof of a theorem of Kingsley [7], which states that, if all the partial derivatives of f of order $\leqslant r$ exist and are continuous in S, then

$$
\left(\partial^{r} / \partial x^{q} \partial y^{r-q}\right)\left(B_{n, m} f\right) \rightarrow\left(\partial^{r} / \partial x^{q} \partial y^{r-q}\right) f \equiv f_{q, r-q}^{(r)}
$$

uniformly in S, as n, m approach infinity in any manner whatsoever.
The main purpose of this paper is to show the convergence of the polynomials with integral coefficients $B_{n, m}^{(q, r-q) \cdot e} f$, to $f_{q, r-q}^{(r)}$, both in the uniform and L_{p}-norms.

With Kantorovic, we define $B_{n, m}^{(q, r-q), e} f$ to be the polynomial

$$
\begin{aligned}
\left(B_{n, m}^{(q, r-q)} f\right)(x, y) \equiv & {\left[\left(\partial^{r} / \partial x^{q} \partial y^{r-q}\right)\left(B_{n, m} f\right)\right](x, y) } \\
= & n(n-1) \cdots(n-q+1) m(m-1) \cdots(m-r+q+1) \\
& \cdot \cdot \sum_{i=0}^{n-q} \sum_{k=0}^{m-r+q} \triangle_{\left(x, n^{-1}\right)}^{q} \bigwedge_{\left(y, m^{-1}\right)}^{r-q} f\left(\frac{i}{n}, \frac{k}{m}\right) \\
& \cdot p_{i, n-q}(x) p_{k, m-r+q}(y),
\end{aligned}
$$

with each coefficient replaced by its integral part (see $[4,6]$). Throughout the following, the superscript " e " will denote a polynomial with integral coefficients in the above sense; and $\|\cdot\|_{p}$ will denote the $L_{p}[S]$ norm $(1 \leqslant p \leqslant \infty)$.

2. Preliminary Results

Lemma 1. If f is continuous in S and $B_{n, m} f$ is the Bernstein polynomial of f, then

$$
\begin{aligned}
\left|\left(B_{n, m} f\right)(x, y)-f(x, y)\right| & \leqslant \frac{3}{2}\left[\omega^{(1)}\left(f ; n^{-1 / 2}\right)+\omega^{(2)}\left(f ; m^{-1 / 2}\right)\right] \\
& \leqslant 3 \omega\left(f ; n^{-1 / 2}, m^{-1 / 2}\right),
\end{aligned}
$$

where $\omega^{(i)}(f ; \delta)$ are the partial moduli of continuity of f, i.e.,

$$
\begin{aligned}
& \omega^{(1)}(f ; \delta)=\omega(f ; \delta, 0)=\sup _{y} \sup _{\left|x_{1}-x_{2}\right| \leqslant \delta}\left|f\left(x_{1}, y\right)-f\left(x_{2}, y\right)\right| \\
& \omega^{(2)}(f ; \delta)=\omega(f ; 0, \delta)=\sup _{x} \sup _{\left|y_{1}-y_{2}\right| \leqslant \delta}\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|
\end{aligned}
$$

and $\omega(f ; \delta, \varepsilon)$ is the complete modulus of continuity of f.
The proof follows simply by extending the proof of the one-dimensional Popoviciu theorem [9] to two dimensions and bearing in mind that the
complete modulus of continuity $\omega(f ; \delta, \varepsilon)$ of the function f is connected with its partial moduli of continuity $\omega(f ; \delta, 0)$ and $\omega(f ; 0, \varepsilon)$ by the inequalities

$$
\omega(f ; \delta, \varepsilon) \leqslant \omega(f ; \delta, 0)+\omega(f ; 0, \varepsilon) \leqslant 2 \omega(f ; \delta, \varepsilon)
$$

We now define the polynomial

$$
\bar{B}_{n, m}^{(q, r-q)} f=\frac{(n-q)!}{n!} \frac{(m-r+q)!}{m!} n^{q} m^{r-q} \boldsymbol{B}_{n, m}^{(q, r-q)} f
$$

and let $\bar{B}_{n, m}^{(q, r-q), e} f$ be its corresponding polynomial with integral coefficients.

Lemma 2. Let f be a function such that its partial derivatives of the first r orders exist and are continuous in S.
(a) If $1 \leqslant p<\infty$, then

$$
\begin{equation*}
\left\|f_{q, r-q}^{(r)}-\bar{B}_{n, m}^{(q, r-q) \cdot e} f\right\|_{p} \leqslant A+B+O\left((n m)^{-1 / p}\right) \tag{1}
\end{equation*}
$$

where $A=3 \omega\left(f_{q, r-q}^{(r)} ; \quad(n-q)^{-1 / 2}, \quad(m-r+q)^{-1 / 2}\right), \quad B=\omega\left(f_{q, r-q}^{(r)} ; q / n\right.$, $(r-q) / m)$;
(b) If $p=\infty$ and the numbers $n^{q} m^{r-q} \triangle_{\left(x, n^{-1}\right)}^{q} \triangle_{\left(y, m^{-1}\right)}^{r-q} f\left(u_{1}, u_{2}\right)$ are integers, where u_{1} is either zero or $(n-q) / n$ and u_{2} is either zero or $(m-r+q) / m$, then

$$
\begin{equation*}
\left\|f_{q, r-q}^{(r)}-\bar{B}_{n, m}^{(q, r-q), e} f\right\|_{\infty} \leqslant A+B+O\left((n m)^{-1}\right) \tag{2}
\end{equation*}
$$

where A and B are as in (a).
Proof. By ((14) Lemma 2, [4]), we find that

$$
\begin{aligned}
& \left(\bar{B}_{n, m}^{(q, r-q)} f\right)(x, y) \\
& \quad=\left(B_{n-q, m-r+q} f_{q, r-q}^{(r)}\right)(x, y) \\
& \quad+\sum_{i=0}^{n-q} \sum_{k=0}^{m-r+q}\left[f_{q, r-q}^{(r)}\left(x_{i k}, y_{i k}\right)-f_{q, r-q}^{(r)}\left(\frac{i}{n-q}, \frac{k}{m-r+q}\right)\right] \\
& \quad \times p_{i, n-q}(x) p_{k, m-r+q}(y)
\end{aligned}
$$

for some $x_{i k}$ and $y_{i k}$ satisfying

$$
i / n<x_{i k}<(i+q) / n \quad \text { and } \quad k / m<y_{i k}<(k+r-q) / m .
$$

In this expression, the first term represents the Bernstein polynomial in two variables corresponding to the function $f_{q, r-q}^{(r)}$. If we denote by
$\omega\left(f_{q, r-q}^{(r)} ; \delta, \varepsilon\right)$ the complete modulus of continuity of $f_{q, r-q}^{(r)}$, it follows that

$$
\begin{aligned}
\left(\bar{B}_{n, m}^{(q, r-q)} f\right)(x, y) \leqslant & \left(B_{n-q, m-r+q} f_{q, r-q}^{(r)}\right)(x, y) \\
& +\omega\left(f_{q, r-q}^{(r)} ; \frac{q}{n}, \frac{r-q}{m}\right)
\end{aligned}
$$

Subtracting $f_{q, r-q}^{(r)}$ from both sides of the former inequality and by Lemma 1, we obtain

$$
\begin{align*}
\left.\mid\left(\bar{B}_{n, m}^{(q, r-q)} f\right)(x, y)-f_{q, r-q}^{(r)}\right)(x, y) \mid \leqslant & 3 \omega\left(f_{q, r-q}^{(r)} ;(n-q)^{-1 / 2},(m-r+q)^{-1 / 2}\right) \\
& +\omega\left(f_{q, r-q}^{(r)} ; \frac{q}{n}, \frac{r-q}{m}\right) \tag{3}
\end{align*}
$$

Now, if we write

$$
D(x, y)=\left(\bar{B}_{n, m}^{(q, r-q)} f\right)(x, y)-\left(\bar{B}_{n, m}^{(q, r-q), e} f\right)(x, y)
$$

it is clear that

$$
|D(x, y)| \leqslant \sum_{i=0}^{n-q} \sum_{k=0}^{m-r+q} x^{i}(1-x)^{n-i} y^{k}(1-y)^{m-k}
$$

and (see [1])

$$
\begin{equation*}
\|D\|_{p}=O\left((n m)^{-1 / p}\right) \tag{4}
\end{equation*}
$$

On the other hand, for $1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
\left\|f_{q, r-q}^{(r)}-\bar{B}_{n, m}^{(q, r-q), e} f\right\|_{p} \leqslant\left\|f_{q, r-q}^{(r)}-\bar{B}_{n, m}^{(q, r-q)} f\right\|_{p}+\|D\|_{p} . \tag{5}
\end{equation*}
$$

Now (1) follows from (3), (4), and (5).
In the case that $p=\infty$, since $\binom{n}{i} \geqslant n, \quad\binom{m}{k} \geqslant m \quad(1 \leqslant i \leqslant n-1$, $1 \leqslant k \leqslant m-1$), we have

$$
\begin{equation*}
|D(x, y)| \leqslant \sum_{i=1}^{n-1} \sum_{k=1}^{m-1} x^{i}(1-x)^{n-i} y^{k}(1-y)^{m-k} \leqslant(n m)^{-1} \tag{6}
\end{equation*}
$$

by the binomial theorem; in this case by means of inequality (5), and with the aid of (3) and (6), (2) follows. The proof is completed.

Therefore, from the continuity of $f_{q, r-q}^{(r)}$ in S, the right-hand side in (1) and (2) approaches zero uniformly in x and y as n, m approach infinity.

3. Main Results

Theorem 1. Let $\max (q, r-q)>1, n_{1}=\min (n, m)$, and let f be a function such that its partial derivatives of the first r orders exist and are continuous in S.
(a) If $1 \leqslant p<\infty$, then

$$
\begin{equation*}
\left\|f_{q, r-q}^{(r)}-B_{n, m}^{(q, r-q), e} f\right\|_{p} \leqslant A+B+O\left(n_{1}^{-\lambda(p)}\right) \tag{7}
\end{equation*}
$$

where A and B are as in Lemma 2 and

$$
\lambda(p)= \begin{cases}1 & \text { if } \quad p=1 \\ 2 / p & \text { if } \quad 2 \leqslant p<\infty\end{cases}
$$

(b) If $p=\infty$ and the numbers
are integers, where u_{1} is either zero or $(n-q) / n$ and u_{2} is either zero or $(m-r+q) / m$, then

$$
\begin{equation*}
\left\|f_{q, r-q}^{(r)}-B_{n, m}^{(q, r-q), e} f\right\|_{\infty} \leqslant A+B+O\left(n_{1}^{-1}\right) \tag{8}
\end{equation*}
$$

where A and B are as in Lemma 2.
Proof. Let us write

$$
\frac{(n-q)!}{n!} \frac{(m-r+q)!}{m!} n^{q} m^{r-q}=1+h_{n m}
$$

Now observe that, for $1 \leqslant p \leqslant \infty$,

$$
\begin{align*}
& \left\|f_{q, r-q}^{(r)}-B_{n, m}^{(q, r-q)} f\right\|_{p} \\
& \quad \leqslant\left\|f_{q, r-q}^{(r)}-\bar{B}_{n, m}^{(q, r-q)} f\right\|_{p}+\left\|h_{n m} B_{n, m}^{(q, r-q)} f\right\|_{p} \tag{9}
\end{align*}
$$

moreover, for the second sum we find

$$
\begin{equation*}
\left|h_{n m} B_{n, m}^{(q, r-q)} f\right|=O\left(n^{-1}\right)+O\left(m^{-1}\right) \tag{10}
\end{equation*}
$$

Obviously, for $1 \leqslant p \leqslant \infty$,

$$
\begin{align*}
\left\|f_{q, r-q}^{(r)}-B_{n, m}^{(q, r-q), e} f\right\|_{p} \leqslant & \left\|f_{q, r-q}^{(r)}-B_{n, m}^{(q, r-q)} f\right\|_{p} \\
& +\left\|B_{n, m}^{(q, r-q)} f-B_{n, m}^{(q, r-q), e} f\right\|_{p} \tag{11}
\end{align*}
$$

Now substituting (9) in (11), and bearing in mind (3), (4), and (10), (7) follows.

For $p=\infty$ the proof proceeds exactly as above but using now inequality (6). This completes the proof.

Remark. For the cases $\max (q, r-q) \leqslant 1$, since

$$
\begin{aligned}
\left(B_{n, m}^{(0,0)} f\right)(x, y) & =\left(\bar{B}_{n, m}^{(0,0)} f\right)(x, y), \\
\left(B_{n, m}^{(1,0)} f\right)(x, y) & =\left(\bar{B}_{n, m}^{(1,0)} f\right)(x, y), \\
\left(B_{n, m}^{(0,1)} f\right)(x, y) & =\left(\bar{B}_{n, m}^{(0,1)} f\right)(x, y), \\
\left(B_{n, m}^{(1,1)} f\right)(x, y) & =\left(\bar{B}_{n, m}^{(1,1)} f\right)(x, y),
\end{aligned}
$$

we get by Lemma 2

$$
\left\|f_{q, r-q}^{(r)}-B_{n, m}^{(q,-q), e} f\right\|_{p} \leqslant A+B+O\left(n_{1}^{-2 / p}\right) \quad(1 \leqslant p<\infty),
$$

and

$$
\left\|f_{q, r-q}^{(r)}-B_{n, m}^{(q, r-q), e} f\right\|_{\rho} \leqslant A+B+O\left(n_{1}^{-2}\right) \quad(p=\infty) .
$$

Now if we consider the Bernstein polynomial in two variables $B_{n-q, m-r+q} f_{q, r-q}^{(r)}$, corresponding to the function $f_{q, r-q}^{(r)}$, we can establish in a similar way the following results:

Theorem 2. Let f be a function such that its partial derivatives of the first r orders exist and are continuous in S.
(a) If $1 \leqslant p<\infty$, then

$$
\left\|f_{q, r-q}^{(r)}-B_{n-q, m-r+q}^{e} f_{q, r-q}^{(r)}\right\|_{p} \leqslant A+O\left((n m)^{-1 / p}\right) ;
$$

(b) If $p=\infty$ and the numbers $f_{q, r-q}^{(r)}\left(u_{1}, u_{2}\right)$ are integers, where u_{i} is either zero or one, $i=1,2$, then

$$
\left\|f_{q, r-q}^{(r)}-B_{n-q, m-r+q}^{e} f_{q, r-q}^{(r)}\right\|_{\infty} \leqslant A+O\left((n m)^{-1}\right) .
$$

In (a) and (b) A is as Lemma 2.
Remark. The one-dimensional case and $r=0$ were studied in uniform norms by L. V. Kantorovic [6] and in L_{p} norms by E. Aparicio [1, 2].

Acknowledgment

The author thanks the referee for his helpful suggestions. It was pointed out by the referee that an inequality of the form given in Lemma 1, with a better coefficient, has been given by A. F. Ipatov [10].

References

1. E. Aparicio, Three theorems on approximation in the space L_{p} by means of polynomials with integer coefficients, Collect. Math. 28 (1977), 217-234. [Spanish]
2. E. Aparicio, On some results in the problem of Diophantine approximation of functions by polynomials, Proc. Steklov Inst. Math., 4 (1986), 7-10.
3. Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, Math. Surveys 17 (1980), R.I.
4. P. L. Butzer, On two-dimensional Bernstein polynomials, Canad. J. Math. 5 (1953), 107-113.
5. P. L. Butzer, Linear combinations of Bernstein polynomials, Canad. J. Math. 5 (1953), 559-567.
6. L. V. Kantorovic, Some remarks on the approximation of functions by means of polynomials with integral coefficients, Izv. Akad. Nauk SSSR Ser. Mat. (1931), 1163-1168. [Russian]
7. E. H. Kingsley, Bernstein polynomials for functions of two variables of class $C^{(k)}$, Proc. Amer. Math. Soc. 2 (1951), 64-71.
8. G. G. Lorentz, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
9. T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica (Cluj) 10 (1935), 49-54.
10. A. F. Ipatov, Estimate of the error and order of approximation of functions of two variables by S. N. Bernstein's polynomials, Uchen. Zap. Petrozavod. Gos. Univ. 4 (1955), 31-48. [Russian]
