JOURNAL OF APPROXIMATION THEORY 59, 300-306 (1989)

Some Properties of Two-Dimensional Bernstein Polynomials

FRANCISCO LUQUIN MARTINEZ

Departamento de Matemáticas, Universidad del País Vasco, Bilbao, Spain

Communicated by P. L. Butzer

Received June 18, 1987; revised March 9, 1988

Let $B_{n,m}f$ be the Bernstein polynomial of two variables, of degree (n, m), corresponding to a function $f: S \to R$, where S is the unit square $[0, 1] \times [0, 1]$. We demonstrate that, if all the partial derivatives of f of the first r orders exist and are continuous in S, then certain polynomials with integral coefficients, $B_{n,m}^{(q,r-q),e}f$, converge to $(\partial^r/\partial x^q \partial y^{r-q})f$ both in the uniform and L_p -norms. We define $B_{n,m}^{(q,r-q),e}f$ to be the polynomial $(\partial^r/\partial x^q \partial y^{r-q})(B_{n,m}f)$ with each coefficient replaced by its integral part. An estimate of the order of approximation is also obtained. © 1989 Academic Press, Inc.

1. INTRODUCTION AND NOTATION

Let the function of two real variables f be given over the unit square

S: [0, 1] × [0, 1];

then the Bernstein polynomial of two variables, of degree (n, m), corresponding to the function f, is defined by means of the formula

$$(B_{n,m}f)(x, y) = \sum_{i=0}^{n} \sum_{k=0}^{m} f\left(\frac{i}{n}, \frac{k}{m}\right) p_{i,n}(x) p_{k,m}(y),$$

where

$$p_{j,s}(z) = {\binom{s}{j}} z^j (1-z)^{s-j}.$$

Obviously

$$\sum_{j=0}^{s} p_{j,s}(z) = 1.$$

0021-9045/89 \$3.00

Copyright © 1989 by Academic Press, Inc. All rights of reproduction in any form reserved. In [4] Butzer has given a more direct proof of a theorem of Kingsley [7], which states that, if all the partial derivatives of f of order $\leq r$ exist and are continuous in S, then

$$(\partial^r/\partial x^q \partial y^{r-q})(B_{n,m}f) \to (\partial^r/\partial x^q \partial y^{r-q})f \equiv f_{q,r-q}^{(r)}$$

uniformly in S, as n, m approach infinity in any manner whatsoever.

The main purpose of this paper is to show the convergence of the polynomials with integral coefficients $B_{n,m}^{(q,r-q),e}f$, to $f_{q,r-q}^{(r)}$, both in the uniform and L_p -norms.

With Kantorovic, we define $B_{n,m}^{(q,r-q),e}f$ to be the polynomial

$$(B_{n,m}^{(q,r-q)}f)(x, y) \equiv [(\partial^r/\partial x^q \, \partial y^{r-q})(B_{n,m}f)](x, y)$$

= $n(n-1)\cdots(n-q+1)m(m-1)\cdots(m-r+q+1)$
 $\cdot \sum_{i=0}^{n-q} \sum_{k=0}^{m-r+q} \bigtriangleup_{(x,n^{-1})} (\sum_{(y,m^{-1})}^{r-q} f\left(\frac{i}{n}, \frac{k}{m}\right)$
 $\cdot p_{i,n-q}(x) p_{k,m-r+q}(y),$

with each coefficient replaced by its integral part (see [4, 6]). Throughout the following, the superscript "e" will denote a polynomial with integral coefficients in the above sense; and $\|\cdot\|_p$ will denote the $L_p[S]$ norm $(1 \le p \le \infty)$.

2. PRELIMINARY RESULTS

LEMMA 1. If f is continuous in S and $B_{n,m} f$ is the Bernstein polynomial of f, then

$$|(B_{n,m}f)(x, y) - f(x, y)| \leq \frac{3}{2} [\omega^{(1)}(f; n^{-1/2}) + \omega^{(2)}(f; m^{-1/2})]$$

$$\leq 3\omega(f; n^{-1/2}, m^{-1/2}),$$

where $\omega^{(i)}(f; \delta)$ are the partial moduli of continuity of f, i.e.,

$$\omega^{(1)}(f;\delta) = \omega(f;\delta,0) = \sup_{y} \sup_{|x_1 - x_2| \le \delta} |f(x_1, y) - f(x_2, y)|$$

$$\omega^{(2)}(f;\delta) = \omega(f;0,\delta) = \sup_{x} \sup_{|y_1 - y_2| \le \delta} |f(x, y_1) - f(x, y_2)|$$

and $\omega(f; \delta, \varepsilon)$ is the complete modulus of continuity of f.

The proof follows simply by extending the proof of the one-dimensional Popoviciu theorem [9] to two dimensions and bearing in mind that the complete modulus of continuity $\omega(f; \delta, \varepsilon)$ of the function f is connected with its partial moduli of continuity $\omega(f; \delta, 0)$ and $\omega(f; 0, \varepsilon)$ by the inequalities

$$\omega(f; \delta, \varepsilon) \leq \omega(f; \delta, 0) + \omega(f; 0, \varepsilon) \leq 2\omega(f; \delta, \varepsilon).$$

We now define the polynomial

$$\overline{B}_{n,m}^{(q,r-q)}f = \frac{(n-q)!}{n!} \frac{(m-r+q)!}{m!} n^q m^{r-q} B_{n,m}^{(q,r-q)}f$$

and let $\overline{B}_{n,m}^{(q,r-q),e}f$ be its corresponding polynomial with integral coefficients.

LEMMA 2. Let f be a function such that its partial derivatives of the first r orders exist and are continuous in S.

(a) If $1 \le p < \infty$, then

$$\|f_{q,r-q}^{(r)} - \overline{B}_{n,m}^{(q,r-q),e}f\|_{p} \leq A + B + O((nm)^{-1/p}),$$
(1)

where $A = 3\omega(f_{q,r-q}^{(r)}; (n-q)^{-1/2}, (m-r+q)^{-1/2}), B = \omega(f_{q,r-q}^{(r)}; q/n, (r-q)/m);$

(b) If $p = \infty$ and the numbers $n^q m^{r-q} \triangle_{(x, n^{-1})}^q \triangle_{(y, m^{-1})}^{r-q} f(u_1, u_2)$ are integers, where u_1 is either zero or (n-q)/n and u_2 is either zero or (m-r+q)/m, then

$$\|f_{q,r-q}^{(r)} - \bar{B}_{n,m}^{(q,r-q),e}f\|_{\infty} \leq A + B + O((nm)^{-1}),$$
(2)

where A and B are as in (a).

Proof. By ((14) Lemma 2, [4], we find that

$$\begin{split} (\overline{B}_{n,m}^{(q,r-q)}f)(x, y) \\ &= (B_{n-q,m-r+q}f_{q,r-q}^{(r)})(x, y) \\ &+ \sum_{i=0}^{n-q} \sum_{k=0}^{m-r+q} \left[f_{q,r-q}^{(r)}(x_{ik}, y_{ik}) - f_{q,r-q}^{(r)} \left(\frac{i}{n-q}, \frac{k}{m-r+q} \right) \right] \\ &\times p_{i,n-q}(x) \ p_{k,m-r+q}(y), \end{split}$$

for some x_{ik} and y_{ik} satisfying

$$i/n < x_{ik} < (i+q)/n$$
 and $k/m < y_{ik} < (k+r-q)/m$

In this expression, the first term represents the Bernstein polynomial in two variables corresponding to the function $f_{q,r-q}^{(r)}$. If we denote by

 $\omega(f_{q,r-q}^{(r)}; \delta, \varepsilon)$ the complete modulus of continuity of $f_{q,r-q}^{(r)}$, it follows that

$$(\bar{B}_{n,m}^{(q,r-q)}f)(x,y) \leq (B_{n-q,m-r+q}f_{q,r-q}^{(r)})(x,y) + \omega \left(f_{q,r-q}^{(r)}; \frac{q}{n}, \frac{r-q}{m}\right).$$

Subtracting $f_{q,r-q}^{(r)}$ from both sides of the former inequality and by Lemma 1, we obtain

$$|(\bar{B}_{n,m}^{(q,r-q)}f)(x, y) - f_{q,r-q}^{(r)})(x, y)| \leq 3\omega(f_{q,r-q}^{(r)}; (n-q)^{-1/2}, (m-r+q)^{-1/2}) + \omega\left(f_{q,r-q}^{(r)}; \frac{q}{n}, \frac{r-q}{m}\right).$$
(3)

Now, if we write

$$D(x, y) = (\overline{B}_{n, m}^{(q, r-q)} f)(x, y) - (\overline{B}_{n, m}^{(q, r-q), e} f)(x, y)$$

it is clear that

$$|D(x, y)| \leq \sum_{i=0}^{n-q} \sum_{k=0}^{m-r+q} x^{i}(1-x)^{n-i} y^{k}(1-y)^{m-k},$$

and (see [1])

$$\|D\|_{p} = O((nm)^{-1/p}).$$
(4)

On the other hand, for $1 \le p \le \infty$,

$$\|f_{q,r-q}^{(r)} - \bar{B}_{n,m}^{(q,r-q),e}f\|_{p} \leq \|f_{q,r-q}^{(r)} - \bar{B}_{n,m}^{(q,r-q)}f\|_{p} + \|D\|_{p}.$$
(5)

Now (1) follows from (3), (4), and (5).

In the case that $p = \infty$, since $\binom{n}{i} \ge n$, $\binom{m}{k} \ge m$ $(1 \le i \le n-1, 1 \le k \le m-1)$, we have

$$|D(x, y)| \leq \sum_{i=1}^{n-1} \sum_{k=1}^{m-1} x^{i} (1-x)^{n-i} y^{k} (1-y)^{m-k} \leq (nm)^{-1}$$
(6)

by the binomial theorem; in this case by means of inequality (5), and with the aid of (3) and (6), (2) follows. The proof is completed.

Therefore, from the continuity of $f_{q,r-q}^{(r)}$ in S, the right-hand side in (1) and (2) approaches zero uniformly in x and y as n, m approach infinity.

3. MAIN RESULTS

THEOREM 1. Let $\max(q, r-q) > 1$, $n_1 = \min(n, m)$, and let f be a function such that its partial derivatives of the first r orders exist and are continuous in S.

(a) If $1 \le p < \infty$, then

$$\|f_{q,r-q}^{(r)} - B_{n,m}^{(q,r-q),e}f\|_{p} \leq A + B + O(n_{1}^{-\lambda(p)}),$$
(7)

where A and B are as in Lemma 2 and

$$\lambda(p) = \begin{cases} 1 & \text{if } p = 1 \\ 2/p & \text{if } 2 \leq p < \infty. \end{cases}$$

(b) If $p = \infty$ and the numbers

$$n!/(n-q)!$$
 $m!/(m-r+q)!$ $\bigwedge_{(x,n^{-1})}^{q} \bigwedge_{(y,m^{-1})}^{r-q} f(u_1,u_2)$

are integers, where u_1 is either zero or (n-q)/n and u_2 is either zero or (m-r+q)/m, then

$$\|f_{q,r-q}^{(r)} - B_{n,m}^{(q,r-q),e}f\|_{\infty} \leq A + B + O(n_1^{-1}),$$
(8)

where A and B are as in Lemma 2.

Proof. Let us write

$$\frac{(n-q)!}{n!} \frac{(m-r+q)!}{m!} n^q m^{r-q} = 1 + h_{nm}.$$

Now observe that, for $1 \le p \le \infty$,

$$\|f_{q,r-q}^{(r)} - B_{n,m}^{(q,r-q)}f\|_{p} \\ \leq \|f_{q,r-q}^{(r)} - \overline{B}_{n,m}^{(q,r-q)}f\|_{p} + \|h_{nm}B_{n,m}^{(q,r-q)}f\|_{p};$$
(9)

moreover, for the second sum we find

$$|h_{nm}B_{n,m}^{(q,r-q)}f| = O(n^{-1}) + O(m^{-1}).$$
⁽¹⁰⁾

Obviously, for $1 \leq p \leq \infty$,

$$\|f_{q,r-q}^{(r)} - B_{n,m}^{(q,r-q),e}f\|_{p} \leq \|f_{q,r-q}^{(r)} - B_{n,m}^{(q,r-q)}f\|_{p} + \|B_{n,m}^{(q,r-q)}f - B_{n,m}^{(q,r-q),e}f\|_{p}.$$
 (11)

Now substituting (9) in (11), and bearing in mind (3), (4), and (10), (7) follows.

For $p = \infty$ the proof proceeds exactly as above but using now inequality (6). This completes the proof.

Remark. For the cases $max(q, r-q) \leq 1$, since

$$(B_{n,m}^{(0,0)}f)(x, y) = (\overline{B}_{n,m}^{(0,0)}f)(x, y),$$

$$(B_{n,m}^{(1,0)}f)(x, y) = (\overline{B}_{n,m}^{(1,0)}f)(x, y),$$

$$(B_{n,m}^{(0,1)}f)(x, y) = (\overline{B}_{n,m}^{(0,1)}f)(x, y),$$

$$(B_{n,m}^{(1,1)}f)(x, y) = (\overline{B}_{n,m}^{(1,1)}f)(x, y),$$

we get by Lemma 2

$$\|f_{q,r-q}^{(r)} - B_{n,m}^{(q,r-q),e}f\|_{p} \leq A + B + O(n_{1}^{-2/p}) \qquad (1 \leq p < \infty),$$

and

$$\|f_{q,r-q}^{(r)} - B_{n,m}^{(q,r-q),e}f\|_{p} \leq A + B + O(n_{1}^{-2}) \qquad (p = \infty).$$

Now if we consider the Bernstein polynomial in two variables $B_{n-q,m-r+q} f_{q,r-q}^{(r)}$, corresponding to the function $f_{q,r-q}^{(r)}$, we can establish in a similar way the following results:

THEOREM 2. Let f be a function such that its partial derivatives of the first r orders exist and are continuous in S.

(a) If $1 \le p < \infty$, then

 $\| f_{q,r-q}^{(r)} - B_{n-q,m-r+q}^{e} f_{q,r-q}^{(r)} \|_{p} \leq A + O((nm)^{-1/p});$

(b) If $p = \infty$ and the numbers $f_{q,r-q}^{(r)}(u_1, u_2)$ are integers, where u_i is either zero or one, i = 1, 2, then

$$\|f_{q,r-q}^{(r)} - B_{n-q,m-r+q}^{e} f_{q,r-q}^{(r)}\|_{\infty} \leq A + O((nm)^{-1}).$$

In (a) and (b) A is as Lemma 2.

Remark. The one-dimensional case and r=0 were studied in uniform norms by L. V. Kantorovic [6] and in L_p norms by E. Aparicio [1, 2].

ACKNOWLEDGMENT

The author thanks the referee for his helpful suggestions. It was pointed out by the referee that an inequality of the form given in Lemma 1, with a better coefficient, has been given by A. F. Ipatov [10].

REFERENCES

- 1. E. APARICIO, Three theorems on approximation in the space L_p by means of polynomials with integer coefficients, *Collect. Math.* 28 (1977), 217–234. [Spanish]
- 2. E. APARICIO, On some results in the problem of Diophantine approximation of functions by polynomials, *Proc. Steklov Inst. Math.*, 4 (1986), 7-10.
- 3. LE BARON O. FERGUSON, Approximation by polynomials with integral coefficients, *Math. Surveys* 17 (1980), R.I.
- 4. P. L. BUTZER, On two-dimensional Bernstein polynomials, Canad. J. Math. 5 (1953), 107-113.
- 5. P. L. BUTZER, Linear combinations of Bernstein polynomials, Canad. J. Math. 5 (1953), 559-567.
- L. V. KANTOROVIC, Some remarks on the approximation of functions by means of polynomials with integral coefficients, *Izv. Akad. Nauk SSSR Ser. Mat.* (1931), 1163–1168. [Russian]
- E. H. KINGSLEY, Bernstein polynomials for functions of two variables of class C^(k), Proc. Amer. Math. Soc. 2 (1951), 64-71.
- 8. G. G. LORENTZ, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
- 9. T. POPOVICIU, Sur l'approximation des fonctions convexes d'ordre supérieur, Mathematica (Cluj) 10 (1935), 49-54.
- A. F. IPATOV, Estimate of the error and order of approximation of functions of two variables by S. N. Bernstein's polynomials, Uchen. Zap. Petrozavod. Gos. Univ. 4 (1955), 31-48. [Russian]